

Linie 10 Bern - Köniz

Doppelgelenktrolleybus mit teilweiser Fahrleitung

Plangenehmigungsverfahren

403

Projektverfasser:

Neubau Gleichrichter Liebefeldpark Projektbasis

www.bsb-partner.ch Waldeggstrasse 30 Postfach 3097 Liebefeld

403_L10_33_221130_Projektbasis

	Kürzel	Datum
Erstellt	tsc	30.11.2022
Geprüft	gle	30.11.2022
Freigegeben	mbe	30.11.2022

Änderungsverzeichnis

Datum	Verfasser	Änderungsbeschreibung	
	Datum	Datum Verfasser	Datum Verfasser Änderungsbeschreibung

Unterschriften

René Schmied Direktor Christoph Roth Projektleiter

Projektverfasser BSB+Partner, Ingenieure und Planer

Michael Beyeler

Mitinhaber, Geschäftsleiter

Inhaltsverzeichnis

1.	Allgemeines	4
1.1.	Einleitung	4
1.2.	Projektziele	4
1.3.	Geltungsbereich	4
1.4.	Objektbeschreibung	5
1.5.	Nutzungsdauer Bauwerke	7
2.	Grundlagen	7
2.1.	Allgemein	7
2.2.	Projektspezifische Grundlagen	7
2.3.	Normen und Richtlinien der Fachverbände	7
3.	Tragwerkskonzept	8
3.1.	Tragsystem	8
3.2.	Abmessung	8
3.3.	Tragwerks- und Berechnungsmodell	9
3.4.	Baustoffe	9
3.5.	Baugrundverhältnisse / Geologie und Hydrologie 1	0
4.	Einwirkungen1	1
4.1.	Ständige Einwirkungen	1
4.2.	Veränderliche Einwirkungen	1
4.3.	Aussergewöhnliche Einwirkungen	1
5.	Tragsicherheit	2
5.1.	Bauzustand1	2
5.2.	Definitive Nutzungsphase 1	2
6.	Gebrauchstauglichkeit1	3
7.	Dauerhaftigkeit	3
	ungsverzeichnis	
	ung 1: Ausschnitt Landeskarte [Quelle: https://map.geo.admin.ch]ung 2: Grundriss Gleichrichteranlage Liebefeldpark	
	ung 3: Querprofil 1 Gleichrichteranlage Liebefeldpark	
Abbildu	ung 4: Querprofil 2 Gleichrichteranlage Liebefeldpark	6
	ung 5: Querprofil 3 Gleichrichteranlage Liebefeldparkung 6: Grundriss Baugrube Liebefeldpark	

1. Allgemeines

1.1. Einleitung

Grundlage der vorliegenden Projektbasis bildet die Nutzungsvereinbarung vom 31.08.2022.

1.2. Projektziele

Auf dem Ast zwischen Bern Bahnhof und Köniz Schloss der Buslinie 10 soll ab 2025 ein Trolleybusse mit teilweiser Fahrleitung eingesetzt werden. Zur Energieversorgung der Doppelgelenktrolleybusse wird zwischen den Haltestellen Bern Monbijou und Köniz Brühlplatz eine Fahrleitung montiert. Für die Stromversorgung der Fahrleitung sind drei Gleichrichteranlagen über die Strecke verteilt notwendig. Um eine gleichmässige Sektorenlänge über die gesamte Fahrleitungslänge zu erhalten wurden folgende Standorte festgelegt:

- Standort Mühlemattstrasse
- Standort Somazzistrasse
- Standort Liebefeldpark

1.3. Geltungsbereich

Die vorliegende Projektbasis gilt für die Baugrubensicherungen sowie den Bau des Gleichrichters am Standort Liebefeldpark.



Abbildung 1: Ausschnitt Landeskarte [Quelle: https://map.geo.admin.ch]

1.4. Objektbeschreibung

Liebefeldpark

Das vorliegende Projekt am Liebefeldpark liegt im Bereich des Kreisels Bündenackerstrasse und Schwarzenburgstrasse in Liebefeld. Der Gleichrichter wird unterirdisch angeordnet und über ein Treppenhaus erschlossen.

Die Gebäudeabmessungen sind im Plan Nr. 406_L10_33_20220831_Situation und Nr. 410_L10_33_20220831_QP ersichtlich. Die Tragstruktur besteht aus Stahlbeton. Die Überdeckung des Gleichrichterraums beträgt ca. 50 cm. Die tiefste Kote der Bodenplatte liegt 3.70 m unter der gewachsenen Terrainoberfläche.

Der Grundwasserspiegel liegt unter der Baugrubensohle. Eine Wasserhaltung ist daher nicht notwendig.

Die Baugrubensicherung ist durch eine Kombination aus Rühlwand und geböschter Baugrube zu gewährleisten. Das Baugrubensystem dient als offener Verbau (Plan. Nr. 411_L10_33_20220831_Baugrube).

1.4.1. Bauwerke

Das Projekt umfasst folgendes Bauwerk:

• Neubau Gleichrichteranlage Liebefeldpark

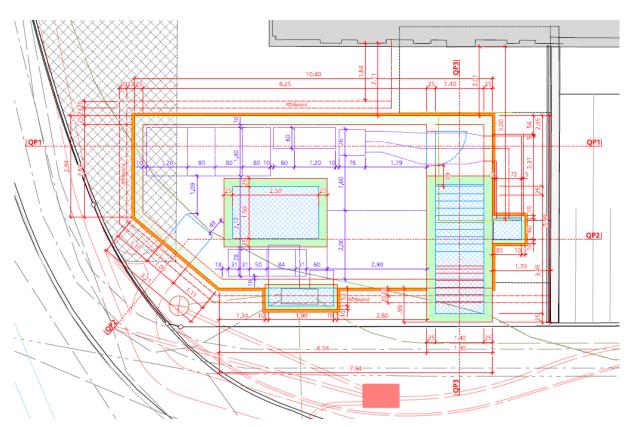


Abbildung 2: Grundriss Gleichrichteranlage Liebefeldpark

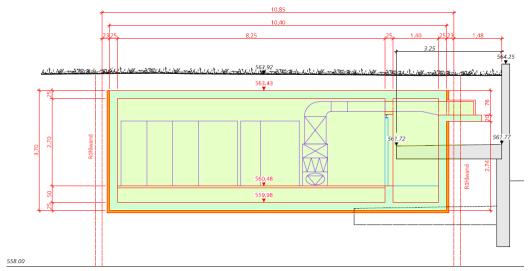


Abbildung 3: Querprofil 1 Gleichrichteranlage Liebefeldpark

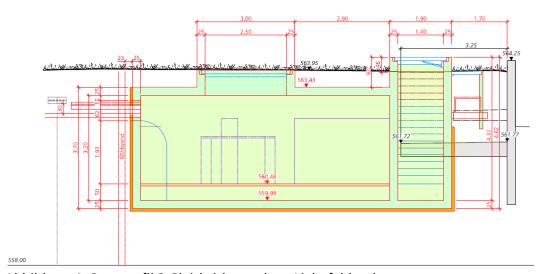


Abbildung 4: Querprofil 2 Gleichrichteranlage Liebefeldpark

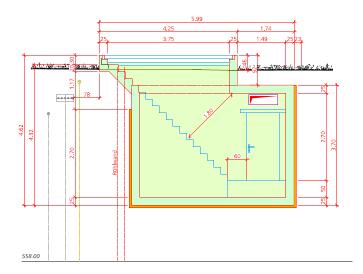


Abbildung 5: Querprofil 3 Gleichrichteranlage Liebefeldpark

1.5. Nutzungsdauer Bauwerke

Unter Voraussetzung einer periodischen Durchführung von Unterhaltsarbeiten gemäss VSS-Normen und SIA 469 (Erhaltung von Bauwerke) wird folgende Nutzungsdauer definiert:

Gleichrichter, Tragstruktur	50 Jahre
Gleichrichter, Tragstruktur	50 Jahre

Die Nutzungsdauer soll durch die Umsetzung der vorliegenden Nutzungsvereinbarung, der daraus folgenden Projektbasis, sowie durch eine regelmässige Überwachung und den normalen Bauwerksunterhalt erreicht werden.

2. Grundlagen

2.1. Allgemein

Grundsätzlich sind sowohl für die Bau- als auch für die Betriebsphase sämtliche Gesetze, Verordnungen, Normen und Richtlinien einzuhalten.

Die nachfolgende Aufzählung ist nicht abschliessend.

2.2. Projektspezifische Grundlagen

- Situationsplan 403_L10_33_220831_Situation, Stand 31.08.2022
- Querprofile 410_L10_33_220831_QP, Stand 31.08.2022
- Nutzungsvereinbarung 402_L10_33_220831_Nutzungvereinbarung, Stand 31.08.2022
- Geologischer Bericht Geotechnisches Institut AG 403_L10_33_220831_Geotechnik, Stand April 2022
- ewb Werknorm E: Erdungen / Netzschutz, TS Gebäude

2.3. Normen und Richtlinien der Fachverbände

SIA 260 (2013)	Grundlagen der Projektierung von Tragwerken
SIA 261 (2020)	Einwirkungen auf Tragwerke
SIA 261/1 (2020)	Einwirkungen auf Tragwerke – Ergänzende Festlegungen
SIA 262 (2013)	Betonbau
SIA 262/1 (2019)	Betonbau – Ergänzende Festlegungen
SIA 263 (2013)	Stahlbau
SIA 263/1 (2020)	Stahlbau – Ergänzende Festlegung
SIA 267 (2013)	Geotechnik
SIA 267/1 (2013)	Geotechnik – Ergänzende Festlegungen

3. Tragwerkskonzept

3.1. Tragsystem

Die Tragkonstruktion besteht aus einer Stahlbetondecke und Stahlbetonwänden. Die Lasten werden über eine elastisch gebettete Bodenplatte in den Baugrund abgetragen.

3.2. Abmessung

3.2.1. Gleichrichter

Die Gebäudeabmessungen sind in den Beilage Nr. 406_L10_33_20220831_Situation und Nr. 410_L10_33_20220831_QP ersichtlich.

3.2.2. Baugrube

Die Baugrubenabmessung ist in der Beilage Nr. 411_L10_33_20220831_Baugrube ersichtlich.

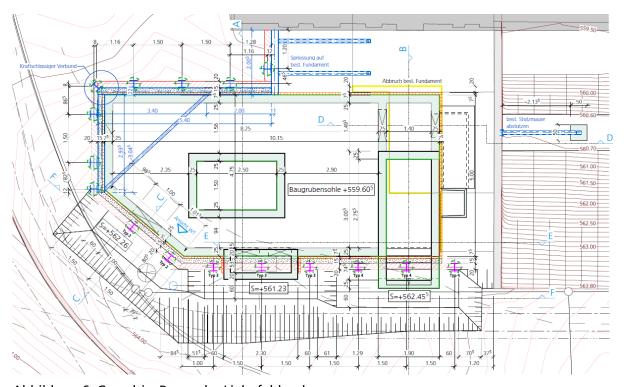


Abbildung 6: Grundriss Baugrube Liebefeldpark

3.3. Tragwerks- und Berechnungsmodell

Für die statische Berechnung werden folgende Subprogramme von CUBUS Software verwendet:

- Cedrus-8 (Gebäudemodell)
- Larix-8 (Baugrubensicherung)
- Statik-8 (Baugrubenabschlüsse)
- Avena-8 (Baugrubenabschlüsse)

3.4. Baustoffe

Baustoff / Bezeichnung	Bauteil	Bemessungswerte	Charakt. Werte
Beton			
NPK RC-C	Alle Bauwerke	$f_{cd} = 20.00 \text{ N/mm}^2$	$f_{ck} = 30.00 N/mm^2$
Beton C 30/37		$\tau_{cd} = 1.10 \text{ N/mm}^2$	$f_{ctm} = 2.90 \text{ N/mm}^2$
XC4(CH) / XF1(CH)		$E_{cd} = 30'000 \text{ N/mm}^2$	$Y_{ck} = 25.0 \text{ kN/m}^3$
D _{max} 32		$\epsilon c_{1d} = 2.0\%$	
CI 0.10 / C3		$\varepsilon c_{2d} = 3.0\%$	
Betonstahl		l	l
Stahl B500B	Alle Bauwerke	fsd = 435 N/mm ²	$f_{sk} = 500 \text{ N/mm}^2$
		Es = 205'000 N/mm ²	$Y_{sk} = 78.5 \text{ kN/m}^3$
Baustahl			
\$235	Stahlkonstruktionen	f _y = 224 N/mm ²	f _y = 235 N/mm ²
S355	(Longarinen, Spriessun-	$f_y = 338 \text{ N/mm}^2$	$f_y = 355 \text{ N/mm}^2$
	gen)		
$(X_{M1} = 1.05)$		E _s = 210'000 N/mm2	$Y_{sk} = 78.5 \text{ kN/m}^3$

3.5. Baugrundverhältnisse / Geologie und Hydrologie <u>Liebefeldpark</u>

Der Projektstandort ist von den Vorgängen während den eiszeitlichen Vergletscherungen geprägt. Während diesen wurde der Fels (Obere Meeresmolasse) vom Gletscher tief eingeschnitten, sodass die Feldoberfläche heute in ca. 150 m Tiefe liegt. Diese Mulde wurde im Laufe der Vergletscherungszyklen mit Moränenmaterial und Verlandungssedimenten gefüllt, die eine Mächtigkeit von rund 100 m erreichen. Während dem Gletscherrückzug wurden dann die fluvioglazialen Felderschotter (Schicht b) von kiesig-sandiger Zusammensetzung mit einer Mächtigkeit von gut 50 m geschüttet. Zuoberst hat sich eine natürliche Deckschicht gebildet, welche auf dem Projektgebiet vollständig durch künstliche Auffüllungen (Schicht a) ersetzt wurde.

Die massgebenden Schichten sind gemäss geotechnischen Bericht wie folgt definiert.

Schicht a / künstliche Auffüllungen

Humoser Boden; Silt, kiesig, sandig, Kiesanteil mit der Tiefe zunehmend, mit organischen Bestandteilen (Wurzeln)

Hinterfüllung der ehemaligen, mit Nagelwänden gesicherten Baugrube aus Kies, stark sandig, vereinzelt Betonbruchstücke, Kornform kantengerundet bis gerundet, z.T. gebrochen, hellgrau bis grau; auch (fein-)Sand, teils (fein-)kiesig, sauber bis teils siltig und tonig

Schicht b / Felderschotter

Kies, schwach bis stark sandig, sauber bis siltig; untergeordnet Sand, schwach bis stark kiesig, sauber bis siltig; jeweils mit wenig bis mässig Steinen und selten Blöcken; mit vereinzelt geringmächtigen (<1.0) Zwischenlagen von Silt, sandig; Kornform angerundet bis gerundet, grau.

Baugrundkennwerte

Bodenschichten	Lage [m. ü. M.]	Empfohlene charakterist	ische Baugrundwerte
Schicht a	Mächtigkeit von 4.00 m	φ' _k = 32°	$\gamma_e = 20.0 \text{ kN/m}^3$
Künstliche	Schichtunterkante:	$\gamma_{\Phi} = 1.2$	
Auffüllungen	uffüllungen ca. 559.9 m ü. M.		
		$M_{E,k} \approx 10 \text{ MN/m}^2$	
Schicht b	Mächtigkeit von > 50 m	φ' _k = 36°	$\gamma_e = 21.0 \text{ kN/m}^3$
Felderschotter	Schichtoberkante:	$\gamma_{\Phi} = 1.2$	
	ca. 559.9 m ü. M.	$c'_k = 0 \text{ kN/m}^2$	
		$M_{E,k} \approx 80 \text{ MN/m}^2$	

4. Einwirkungen

4.1. Ständige Einwirkungen

Einwirkung	Massnahmen / Weiterbearbeitung	Annahme für die Bemessung
Eigengewicht		
- Beton		Eigengewicht Beton $\gamma_k = 25.0 \text{ kN/m}^3$
- Stahl	Statische Bemessung	Eigengewicht Stahl γ _k = 78.5 kN/m ³
Auflasten		
- Auflasten	Statische Bemessung	Auflast: $g_k = 2.0 \text{ kN/m}^2$
Hinterfüllung und Erddruck	Statische BemessungÜberprüfung der angenommenen Baugrundverhältnisse	Tragsicherheit Erdruhedruckanteil (0%) Gebrauchstauglichkeit Erdruhedruckanteil (100%)
	- Kontrolle Hinterfüllungsmate- rial und Einbau	

4.2. Veränderliche Einwirkungen

Einwirkung	Massnahmen / Weiterbearbeitung	Annahme für die Bemessung
Schnee	Statische Berechnung	Bezugshöhe ho = 563.95 m ü. M. $S_k = 1.44 \text{ kN/m}^2$ $\mu_i = 0.80$ $C_e = 1.0$ $C_T = 1.0$ $q_k = S_k * C_T * C_e * \mu_i = 1.15 \text{ kN/m}^2$ Annahme $q_k = 1.2 \text{ kN/m}^2$
Nutzlast	Statische Berechnung	Kategorie A1 Verteilte Last $q_k = 2.0 \text{ kN/m}^2$ Kategorie A3 Verteilte Last $q_k = 4.0 \text{ kN/m}^2$ Kategorie G Verteilte Last $q_k = 5.0 \text{ kN/m}^2$
Verkehrslast	Statische Berechnung	Kategorie G Wanderlast: $1 \times Qk1 + 3 \times Qk2$ Punktlast $Q_{k1} = 225.0 \text{ kN}$; $Q_{k2} = 9.0 \text{ kN}$

4.3. Aussergewöhnliche Einwirkungen

Einwirkung	Massnahmen / Weiterbearbei- tung	Annahme für die Bemessung
Erdbeben	Statische Berechnung	Bauwerksklasse I Baugrundklasse C Gefährdungszone Z1b
Explosion	Keine	Akzeptiertes Risiko
Sabotage	Keine	Akzeptiertes Risiko
Störlichtbogen	Statische Bemessung	Störlichtbogendrucksimulation (Länggasse)

5. Tragsicherheit

5.1. Bauzustand

Gefährdungs- bild	Bemes- sungssitua- tion	Grenzzu- stand	Annahmen für die Trag- werksanalyse und Bemes- sung	Lastbeiwerte
Baugrubensiche	erung			
Nutzlast	vorüberge- hend	Typ 2: Grundbruch / Gleiten	LE: Nutzlast ST: Eigenlasten Ständige Lasten, Auflasten Erddruck	$\gamma_Q = 1.5$ $\gamma_G = 1.35 / 1.0$ $\gamma_G = 1.35 / 0.7$
Nutzlast	vorüberge- hend	Typ 3: Geländebruch	LE: Nutzlast ST: Eigenlasten Ständige Lasten, Auflasten Erddruck	$\gamma_{Q} = 1.3$ $\gamma_{G} = 1.0$ $\gamma_{G} = 1.0$

5.2. Definitive Nutzungsphase

Gefährdungs- bild	Bemes- sungssitua- tion	Grenzzu- stand	Annahmen für die Trag- werksanalyse und Bemes- sung	Lastbeiwerte			
Gebäude							
Nutzlast	Andauernd o- der vorüber- gehend	Typ 2	LE: Nutzlasten ST: Eigenlasten Ständige Lasten, Auflasten BE: Schnee	$\gamma_Q = 1.5$ $\gamma_G = 1.35 / 0.8$ $\psi_0 = 0.9$			
Schnee	Andauernd o- der vorüber- gehend	Typ 2	LE: Schnee ST: Eigenlasten Ständige Lasten, Auflasten BE: Nutzlast	$\gamma_Q = 1.5$ $\gamma_G = 1.35 / 0.8$ $\psi_0 = 0.7$			
Erdbeben	Ausserge- wöhnlich	Тур 2	LE: Erdbeben ST: Eigenlasten Ständige Lasten, Auflasten	$A_d = 1.0$ $\gamma_G = 1.0$			
Baugrubensich	erung						
Nutzlast	Andauernd o- der vorüber- gehend	Typ 1: Kippen	LE: Nutzlast ST: Eigenlasten Ständige Lasten, Auflasten Erddruck	$\gamma_Q = 1.5$ $\gamma_G = 1.1 / 0.9$ $\gamma_G = 1.35 / 0.8$			
Nutzlast	Andauernd o- der vorüber- gehend	Typ 2: Grundbruch / Gleiten	LE: Nutzlast ST: Eigenlasten Ständige Lasten, Auflasten Erddruck	$\gamma_Q = 1.5$ $\gamma_G = 1.35 / 0.8$ $\gamma_G = 1.35 / 0.7$			
Nutzlast	Andauernd o- der vorüber- gehend	Typ 3: Geländebruch	LE: Nutzlast ST: Eigenlasten Ständige Lasten, Auflasten Erddruck	$\gamma_Q = 1.3$ $\gamma_G = 1.0 / 1.0$ $\gamma_G = 1.0 / 1.0$			

6. Gebrauchstauglichkeit

Lastfall	Häufig w < I/350	Quasi-ständig w < l/300	Häufig u < h/200
Ständige Einwirkungen			
- Eigenlast	1.0	1.0	1.0
- Auflasten	1.0	1.0	1.0
Veränderliche Einwirkung	Ψ0	Ψ1	Ψ2
- Schnee	0.9	0.58	0
- Nutzlast	0.7	0.7	0.6

7. Dauerhaftigkeit

Anforderungen	Massnahmen	Weiterbearbeitung
Dichtigkeit	Gelbe Wanne	Kontrollplan
		Ausführungskontrollen
Korrosionsschutz Bewehrung	Bewehrungsüberdeckung gem.	Kontrollplan
	SIA 262 Tab. 18	Ausführungskontrollen
Frost und Frosttausalzbeständig-	Betonsorte	Frischbetonprüfungen
keit		Konformitätsnachweis